X-Ray Structure Analysis of the *Cis*- and *Trans*bis-(*o*-aminophenyldiphenylphosphine)platinum(II)-Cationic Complexes

M. K. COOPER, J. M. DOWNES

School of Chemistry, University of Sydney, Sydney 2006, N.S.W., Australia

H. J. GOODWIN and M. McPARTLIN

School of Chemistry, The Polytechnic of North London, London N7 8DB, U.K.

Received November 4, 1982

The structures of the neutral *cis*- and *trans*-isomers of $[Pt(NH_2]$, (I) and (II) respectively, containing the deprotonated form of the recently synthesised [1] hybrid ligand *o*-aminophenyldiphenylphosphine (PNH₂) are reported in the preceding paper [2]. We present here a preliminary account of the structures of the *cis*-[III] and *trans*-[IV] isomers of the cationic bis-chelate Pt(II) complexes of the neutral ligand, $[Pt(NH_2)_2]^{2^+}$.

The title cations (III) and (IV) were prepared as the perchlorate and *p*-toluenesulphonate salts, respectively. Crystals of (III) were obtained by treating the yellow cis-[Pt(NH)₂] in aqueous ethanol with *p*-toluenesulphonic acid until the solution became colourless and they were recrystallised from ethanol. Crystals of (IV) were obtained as a monohydrate when a suspension of *trans*-[Pt(NH)₂] (II) in nitromethane was treated with perchloric acid.

Crystals of $[C_{36}H_{32}N_2P_2P_1][C_6H_7O_3S]$ (III) were monoclinic, space group C2/c, a = 10.209(2), b = 20.248(4), c = 22.372 Å, $\beta = 95.53^\circ$, V = 4603.03Å³, Z = 4, μ (Mo-K_{α}) = 31.06 cm⁻¹. Crystals of $[C_{36}-H_{32}N_2P_2P_1] \cdot 2[CIO_4] \cdot 2H_2O$ (IV) were monoclinic, space group $P2_1/c$, a = 9.467(2), b = 15.267(3), c = 13.031 Å, $\beta = 101.78^\circ$, V = 1843.76 Å³, Z = 2, μ (Mo-K_{α}) = 39.09 cm⁻¹. The X-ray analyses were carried out using 2380 reflections for (III) and 1812 reflections for (IV) with $I/\sigma(I) \ge 3.0$ measured in the θ -range 3–25°. The data collection and method of refinement are as described previously [2]. Anisotropic thermal parameters were assigned to the Pt and P atoms in both structures, to the S atom in (III), and to the N atom and the atoms of the perchlorate counter-ion in (IV). The present R values are 0.0584(III) and 0.0484 (IV).

In both structures the Pt atoms are on sites of special symmetry; the cations (III) and (IV) have

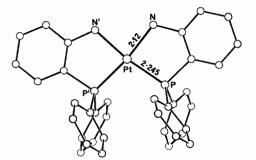


Fig. 1. The structure of the *cis*-isomer of $[Pt(NH_2)_2]^{2+}$ (III) showing the principal bond lengths (A). The angles of the coordination sphere are P-Pt-P' 101.3(2), N-Pt-N' 85.9 and P-Pt-N 86.4°.

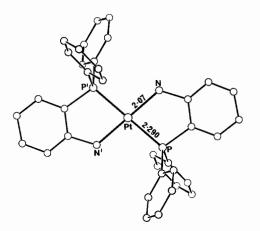


Fig. 2. The structure of the *trans*-isomer of $[Pt(NH_2)]^{2+}$ (IV) showing the principal bond lengths (Λ_1). The angles of the coordination sphere are P-Pt-N 82.0(4) and P-Pt-N' 98.0(4)°.

crystallographic C₂ and C_i symmetry respectively. The structures and principal bond lengths are shown in Figs. 1 and 2. The Pt-P bond length in the *trans*isomer (IV) is 2.290 Å almost identical to that of 2.289 Å in the corresponding neutral *trans*isomer of $[Pt(NH_2]$ (II) [2]. The Pt-P bond length of 2.245 Å in the *cis*-compound (III) is slightly longer than the mean of 2.240 Å observed in the corresponding neutral *cis*- $[Pt(NH_2]$ compound (I) but this difference is of very low significance (*ca*. 1 σ). The Pt-N(amino) bond lengths of 2.12 (III) and 2.07 Å (IV) are significantly longer than the corresponding P-N (amido) bond lengths in the corresponding *cis*- and *trans*- $[Pt(NH_2]$ isomers of 2.02 (I) and 2.04 Å (II).

The conformation of the phenyl rings of the *cis*phosphine ligands in [III] is similar to that observed

© Elsevier Sequoia/Printed in Switzerland

0020-1693/83/0000-0000/\$03.00

in the neutral cis- $[Pt(PN_2)]$ (I) [2] with the rings of the two halves of the cation in nearly parallel pairs {mean dihedral angle 11.1°}. The P-Pt-P' angle of 101.3° in (III) is slightly smaller than that in (I) of 104.2°. Even so the only contact of less than 2.4.8 between the circling of (III) is C(22) to than 3.4 Å between the *cis*-ligands in (III) is $C(22)\cdots$ C(32) 3.39 Å.

References

- 1 M. K. Cooper and J. M. Downes, Inorg. Chem., 17, 880 (1978).
 M. K. Cooper, J. M. Downes, H. J. Goodwin, M. McPartlin
- and J. M. Rosalky, Inorg. Chim. Acta, 76, L155 (1983).